Regulation of Dynamic Protein S-Acylation
نویسندگان
چکیده
منابع مشابه
Ion channel regulation by protein S-acylation
Protein S-acylation, the reversible covalent fatty-acid modification of cysteine residues, has emerged as a dynamic posttranslational modification (PTM) that controls the diversity, life cycle, and physiological function of numerous ligand- and voltage-gated ion channels. S-acylation is enzymatically mediated by a diverse family of acyltransferases (zDHHCs) and is reversed by acylthioesterases....
متن کاملTandem fluorescence imaging of dynamic S-acylation and protein turnover.
The functional significance and regulation of reversible S-acylation on diverse proteins remain unclear because of limited methods for efficient quantitative analysis of palmitate turnover. Here, we describe a tandem labeling and detection method to simultaneously monitor dynamic S-palmitoylation and protein turnover. By combining S-acylation and cotranslational fatty acid chemical reporters wi...
متن کاملThe physiology of protein S-acylation.
Protein S-acylation, the only fully reversible posttranslational lipid modification of proteins, is emerging as a ubiquitous mechanism to control the properties and function of a diverse array of proteins and consequently physiological processes. S-acylation results from the enzymatic addition of long-chain lipids, most typically palmitate, onto intracellular cysteine residues of soluble and tr...
متن کاملS-acylation by the DHHC protein family.
A family of 23 DHHC (Asp-His-His-Cys) proteins that function as mammalian S-acyltransferases has been identified, reinvigorating the study of protein S-acylation. Recent studies have continued to reveal how S-acylation affects target proteins, and have provided glimpses of how DHHC-substrate specificity might be achieved.
متن کاملTechnologies and Challenges in Proteomic Analysis of Protein S-acylation
Protein S-acylation (also called palmitoylation) is a pervasive post-translational modification that plays critical roles in regulating protein trafficking, localization, stability, activity, and complex formation. The past decade has witnessed tremendous advances in the study of protein S-acylation, largely owing to the development of novel S-acylproteomics technologies. In this review, we sum...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Frontiers in Molecular Biosciences
سال: 2021
ISSN: 2296-889X
DOI: 10.3389/fmolb.2021.656440